General Atom-Bond Sum-Connectivity Index of Graphs
نویسندگان
چکیده
This paper is concerned with the general atom-bond sum-connectivity index ABSγ, which a generalization of recently proposed index, where γ any real number. For connected graph G more than two vertices, number ABSγ(G) defined as sum (1−2(dx+dy)−1)γ over all edges xy G, dx and dy represent degrees vertices x y respectively. −10≤γ≤10, significance ABSγ examined on data set twenty-five benzenoid hydrocarbons for predicting their enthalpy formation. It found that predictive ability selected property considered comparable to other existing indices this type. The effect addition an edge between non-adjacent under also investigated. Furthermore, several extremal results regarding trees, graphs, triangle-free graphs given are proved.
منابع مشابه
On Second Atom-Bond Connectivity Index
The atom-bond connectivity index of graph is a topological index proposed by Estrada et al. as ABC (G) uvE (G ) (du dv 2) / dudv , where the summation goes over all edges of G, du and dv are the degrees of the terminal vertices u and v of edge uv. In the present paper, some upper bounds for the second type of atom-bond connectivity index are computed.
متن کاملA Note on Atom Bond Connectivity Index
The atom bond connectivity index of a graph is a new topological index was defined by E. Estrada as ABC(G) uvE (dG(u) dG(v) 2) / dG(u)dG(v) , where G d ( u ) denotes degree of vertex u. In this paper we present some bounds of this new topological index.
متن کاملon the general sum–connectivity co–index of graphs
in this paper, a new molecular-structure descriptor, the general sum–connectivity co–index is considered, which generalizes the first zagreb co–index and the general sum–connectivity index of graph theory. we mainly explore the lower and upper bounds in termsof the order and size for this new invariant. additionally, the nordhaus–gaddum–type resultis also represented.
متن کاملOn generalized atom-bond connectivity index of cacti
The generalized atom-bond connectivity index of a graph G is denoted by ABCa(G) and defined as the sum of weights ((d(u)+d(v)-2)/d(u)d(v))aa$ over all edges uv∊G. A cactus is a graph in which any two cycles have at most one common vertex. In this paper, we compute sharp bounds for ABCa index for cacti of order $n$ ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2023
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math11112494